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ABSTRACT 
 
DeepSAT is a program which solves the well-known satisfiability problem. 

The algorithm generalizes the traditional conflict-driven clause learning by introducing new variables during the run.  The superior 
performance of DeepSAT results from the greater power of the extended-resolution proof language (used by DeepSAT) vs the resolution 
proof language (used by traditional solvers). 
 
Discussion includes benchmark data showing polynomial growth of runtime and comparison to traditional solvers, description of the 
algorithm, and theoretical discussion (including comments on the P ?= NP question). 
 

1 INTRODUCTION 
 
DeepSAT is a program which solves the well-known satisfiability problem.  
 
DeepSAT consumes a satisfiability problem expressed as a product-of-sums1. For example 
 
  (A|B|C)&(!C|D|E)&(!B|D|G)&.... 
 
DeepSAT must either find assignments of TRUE or FALSE to all of the variables to make the entire Boolean expression TRUE, or else 
DeepSAT must prove that no such assignment exists.  Note that for the entire expression to be TRUE, each clause must be TRUE.  
 
DeepSAT attempts to construct a refutation (ie, proof that no variable assignment makes all clauses TRUE).  The refutation is in the 
formal language called "extended resolution".  Extended resolution derives a new clause from two existing clauses by a resolution step 
For example, C and !C appear in the clauses 
 
  (A|B|C) 
   
and  
 
  (!C|D|E) 
 
If C == TRUE, then !C must be FALSE, so D|E must be TRUE.  Alternatively, if C == FALSE, then A|B must be TRUE.  Thus 
 
  (A|B|D|E)  
 
must be TRUE.  So we derive 
 
  (A|B|D|E)  
 
from the 2 clauses (A|B|C) and (!C|D|E).  That is 
 
  (A|B|C)&(!C|D|E) --> (A|B|D|E)       (equation 2) 
 
This is an example resolution step. 
 

 
1 “|” means Boolean OR, “&” means Boolean AND, “!” means Boolean NOT.  !FALSE = TRUE, !TRUE = FALSE.  FALSE|FALSE = FALSE, all other combinations TRUE.  
TRUE&TRUE = TRUE, all other combinations FALSE. 
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Conflict-driven-clause-learning is a method of proving new clauses by several resolution steps (see section 3.7 for details). 
 
A sequence a resolution steps that derives the empty clause is a refutation. 
 
For example, consider the satisfiability problem 
 
(A|B)&(B|C)&(A|C)&(!A|!B)&(!A|!B)&(!A|!C) 
 
Below is a resolution refutation.  It is in the high school geometry proof format, with each line consisting of 
<label><statement><reason>. 
 
/* definition of problem */ 
(1)   A | B           - axiom; 
(2)   B | C           - axiom; 
(3)   A | C           - axiom; 
(4)   !A | !B         - axiom; 
(5)   !B | !C         - axiom; 
(6)   !A | !C         - axiom; 
 
/* proof */ 
(7)   B | !C          - resolve (1), (6); 
(8)   B               - resolve (2), (7); 
(9)   !B | C          - resolve (3), (4); 
(10)  !B              - resolve (5), (9); 
(11)  <CONTRADICTION> - resolve (8), (10); 
 
 
Extended resolution also allows definition of new variables in terms of existing variables, in order to aid in constructing a resolution 
refutation.  DeepSAT defines new variables as OR of 2 existing variables or their inverses.  For example 
 
  define NEWVAR1 = B|!D 
 
DeepSAT defines the new variable by entering 3 new clauses into its clause database [tseitin1970], which for this example are 
 
  (NEWVAR1|!B)&(NEWVAR1|D)&(!NEW_VAR|B|!D)     (equation 3) 
 
 
Many satisfiability problem classes require exponential length refutations in resolution [urquahart1987] [chvatal1988] [urquahart1995], 
whereas this author knows of no fully proved result showing that any satisfiability problem class requires an exponential length 
refutation in extended resolution [urquahart1995].  The length of the shortest possible refutation is important, because an algorithm 
which solves satisfiability problem must write a refutation, either implicitly or explicitly, in order to be correct for unsatisfiable 
problems.  If the length of the shortest refutation is exponential, then just writing the refutation requires exponential time, without even 
counting the time to find the refutation, so we can have no hope of a sub-exponential runtime algorithm.  Problem classes known to 
require exponential length refutations in resolution include pigeonhole principle, xor reordering equivalence, multiplier equivalence 
[urquahart1987] [urquahart1995].  But these same problem classes have polynomial-sized refutations in extended resolution. 
 
We present a theoretical argument that the length of a refutation produced by DeepSAT is polynomial in the length of the shortest 
possible refutation.  Since DeepSAT uses polynomial time to produce each step in the refutation, DeepSAT runs in time polynomial in 
the length of the shortest refutation.     
 
Benchmark data shows that performance of DeepSAT is superior to traditional solvers on the hardest problems2, and that growth of 
runtime and proof size is polynomial, as predicted by the theory. 
 
Finally, we discuss the relationship with the P ?= NP question. In particular, (if our theoretical argument is correct), DeepSAT solves 
SAT in polynomial time if the shortest possible refutation is of polynomial length.  Thus co-NP = NP implies that DeepSAT solves all 
SAT problems in polynomial time. 
 

 
2 By “hardest”, we mean problems where the shortest resolution refutation is of exponential length in the problem size. 
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2 BENCHMARK DATA 

2.1 Hard Testcases from SATRACE SAT Contest on satlive.org 
 
Table 10 shows comparison between DeepSAT and MINISAT2 on these hard public domain testcases.  (MINISAT2 is a popular modern 
SAT solver).  The testcases were selected because they give traditional SAT solvers trouble, and they seemed to have short refutations in 
proof languages other than resolution. 

Table 10: DeepSAT and MINISAT2 on SELECTED SATRACE PROBLEMS 

 
 
 

 

 

 

 

 

 

 

 

 

2.2 Pigeonhole principle 
 
Satisfiability problem which asserts that P pegs must be placed in P-1 holes. 
 
Table 11 shows DeepSAT runs on problems of size 4 to 20.  For comparison, we also ran on the popular SAT solver MINISAT2.  Log-log 
plots show runtime vs problem size.  In addition, we show log-log plot of problem size vs runtime for MINISAT2, which shows up as a 
curve rather than a line, because of the exponential growth of runtime of MINISAT2 (because pigeonhole problem has shortest 
resolution refutation size which grows exponentially [urquahart1987]). 
 
The linear shape of the DeepSAT log-log plot implies polynomial growth rate. To see this, observe that if 
 
  runtime = K*problem_size^E 
 
then taking log of both sides yields 
 
  log(runtime) = E*log(problem_size) + log(K) 
 
Thus, the slope of the line of the log-log plot is the exponent of the polynomial growth. 
 
The regression fit on the log-log data shows  
 
  DeepSAT runtime = O(problem_size^5.4) 
 

 

solver -----------------------------------------
testcase ---------------------------------------------- minisat2 ----------- DeepSAT ------------------------- 
name # vars # terms conflicts run time conflicts run time # vars 

(sec) (sec)
****  hard cases from satlive.org: 
gripper14u.shuffled-as.sat03-397 4355 40382 88421710 10126.4 8.21E+06 9733.299 461 
bevhcube6.shuffled-as.sat03-1428 576 1536 killed after 5 days 5.38E+06 1483.859 2591
marg6x6.shuffled-as.sat03-1456 156 800 killed after 5 days 3.27E+06 1006.067 1849
urqh1c6x6.shuffled-as.sat03-1469 191 1984 killed after 5 days 1.11E+07 3642.59 3110
urquhart4_25bis.shuffled-as.sat03-1554 192 512 killed after 5 days 6.25E+05 78.542 659 
pyhala-braun-unsat-40-4-04.shuffled-as.sat03-1548 9638 31216 5738857 866.727 9.21E+05 2775.019 241 
Urquhart-s5-b3.shuffled-as.sat03-1572 121 1116 killed after 5 days 3.22E+06 1026.674 1913
am_6_6.shuffled-as.sat03-362 2269 7809 64900221 2987.85 5.47E+06 6124.852 1049
hcb4.shuffled-as.sat03-1432 112 2048 killed after 5 days 1.32E+07 9533.689 3445
hypercube6.shuffled-as.sat03-1436 192 2048 killed after 5 days 4.26E+06 1167.125 2192
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Table 11: DeepSAT and MINISAT2 on PIGEONHOLE PROBLEM INSTANCES 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
                                                                                                                         EDIT NOTE:  change “TORTOISE” to “DeepSAT” below 

 
 

2.3 XOR reordering 
 
Satisfiability problem which asserts that N variables exclusive-or-ed together in 2 different random orders have different results for some 
input. 
 

solver ----------------------------------------- 
testcase ---------------------------------------------- minisat2 ----------- DeepSAT ------------------------- 
name # vars # terms conflicts run time conflicts run time # vars 

(sec) (sec) 
holemin.4.3 12 22 0 0 6 0.011 0 
holemin.5.4 20 45 32 0 31 0.011 0 
holemin.6.5 30 81 251 0.001 156 0.036 0 
holemin.7.6 42 133 1206 0.005 1142 0.575 1 
holemin.8.7 56 204 10495 0.063 10150 2.989 10 
holemin.9.8 72 297 76178 0.52 324962 12.987 117 
holemin.10.9 90 415 551941 5.32 337481 14.2 155 
holemin.11.10 110 561 16769952 275.264 717183 54.82 210 
holemin.12.11 132 738 1.09E+08 3092.963 1.04E+06 230.343 298 
holemin.13.12 156 949 8.89E+09 241056.8 3.10E+06 838.772 675 
holemin.14.13 182 1197 killed after 5 days 7.61E+06 2852.959 832 
holemin.15.14 210 1485 killed after 5 days 1.38E+07 14788.07 1144 
holemin.16.15 240 1816 killed after 5 days 2.80E+07 24844.51 1981 
holemin.17.16 272 2193 killed after 5 days 5.59E+07 143035.4 1999 
holemin.18.17 306 2619 killed after 5 days 1.30E+08 181405.9 4352 
holemin.19.18 342 3097 killed after 5 days 1.99E+08 387869.5 4322 
holemin.20.19 380 3630 killed after 5 days 3.72E+08 1924853 5957 
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Table 12 shows DeepSAT runs on problems of size 40 to 400 variables.  For comparison, we also ran on the popular SAT solver 
MINISAT2.  The DeepSAT plot is as above. 
 
The regression fit shows  
 
  DeepSAT runtime = O(problem_size^6.0) 
 

Table 12: DeepSAT and MINISAT2 on XOR REORDER PROBLEM INSTANCES 
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DeepSAT:  XOR-REORDER: size vs runtime

solver -----------------------------------------
testcase ---------------------------------------------- minisat2 ----------- DeepSAT -------------------------
name # vars # terms conflicts run time conflicts run time # vars

(sec) (sec)
xor.40.0 121 316 17381527 75 45021 3.033 162 
xor.50.0 151 396 1.01E+09 6787 193303 19.903 273 
xor.60.0 181 476 1.95E+10 149245 420177 63.806 529 
xor.80.0 241 636 killed after 5 days 2.76E+06 731.192 1487
xor.100.0 301 796 killed after 5 days 4.07E+06 1358.264 2048
xor.125.0 376 996 killed after 5 days 1.93E+07 13307.93 3325
xor.150.0 451 1196 killed after 5 days 2.63E+07 19201.4 4247
xor.175.0 524 1396 killed after 5 days 6.09E+07 56159.71 6218
xor.200.0 599 1596 killed after 5 days 9.03E+07 89341.69 7585
xor.250.0 749 1996 killed after 5 days 2.67E+08 374262.8 12785
xor.300.0 899 2396 killed after 5 days 5.43E+08 1101667 17984
xor.350.0 1051 2796 killed after 5 days 9.56E+08 2280038 23032
xor.400.0 1199 3196 killed after 5 days 1.36E+09 3908370 28953
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2.4 Multiplier equivalence/correctness 

 
Satisfiability problem which asserts that two different randomly generated multipliers get different results for some input.  To prevent 
the simple enumeration refutation, the product plane is used directly as input, with no input bits feeding the product plane with bit AND 
logic. To make the problem hard, partial sums and carry bits at each level are scrambled by a randomly generated 3-tree of full adders. 
 
Table 13 shows DeepSAT runs on problems of size 2 to 12. For comparison, we also ran on the popular SAT solver MINISAT2. The 
DeepSAT plot is as above. 
 
The regression fit shows  
 
  DeepSAT runtime = O(problem_size^9.6) 
 

Table 13: DeepSAT and MINISAT2 on RANDOMIZED MULTIPLIER EQUIVALENCE PROBLEM INSTANCES 
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DeepSAT:  MULTIPLIER EQUIVALENCE: size vs 
runtime

solver -----------------------------------------
testcase ---------------------------------------------- minisat2 ----------- DeepSAT -------------------------
name # vars # terms conflicts run time conflicts run time # vars

(sec) (sec)
rmult_noin.0.2 41 77 12 0 11 0.008 0 
rmult_noin.0.3 94 217 135 0.001999 146 0.012 0 
rmult_noin.0.4 169 425 3362 0.017997 788 0.042 0 
rmult_noin.0.5 266 701 20048 0.124981 5705 0.172 2 
rmult_noin.0.6 385 1045 132483 0.970852 30598 2.081 4 
rmult_noin.0.7 526 1457 2353389 22.2006 162819 26.791 56 
rmult_noin.0.8 689 1937 88293384 1174.84 862561 238.81 306 
rmult_noin.0.9 874 2485 1.35E+08 2193.17 4.37E+06 1387.344 695 
rmult_noin.0.10 1081 3101 4.44E+09 120118 1.89E+07 16646.99 1896
rmult_noin.0.11 1310 3785 killed after 10 days 8.33E+07 225829.6 6030
rmult_noin.0.12 1561 4537 killed after 10 days 2.07E+08 1199233 11969
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3 DeepSAT's ALGORITHM 
 
DeepSAT uses conflict driven clause learning in a manner similar to Chaff [chaff2001] to prove new clauses (section 3.7 below is a brief 
discussion of conflict-driven clause learning).  Conflict-driven clause learning is an effective method to search for a resolution refutation 
and a satisfying variable assignment simultaneously.  DeepSAT is similar to Chaff in using variable activity to choose which variable to 
branch, and using 2-watched-literal algorithm for implication propagation.  Unlike Chaff, DeepSAT chooses variable phase randomly 
rather than by activity.  This difference seems to be very important for generating new variables effectively. 
 
In addition to conflict-driven clause learning, DeepSAT identifies length-1 and length-2 clauses to prove by searching cycles in length-2 
and length-3 clauses.  Section 3.8 below describes details. 
 
After running conflict-driven clause learning for number of steps of order the number of literals in the clause database, DeepSAT 
stops to do several O(N) runtime operations.  These are described below.  After running these O(N) operations, DeepSAT resumes 
conflict-driven-clause-learning. 
 

3.1 NEW VARIABLE HANDLING 
 
The most important of these O(N) operations is handling of new variables. DeepSAT defines a new variable as the OR of 2 previously 
existing variables, for example 
 
  NEW_VARIABLE = A | !C 
 
DeepSAT defines the new variable by entering 3 new clauses into its clause database [tseitin1970], which for this example are 
 
  (NEWVAR1|C)&(NEWVAR1|!A)&(!NEW_VAR|A|!C)  
 
First DeepSAT examines all clauses to see if any clauses contain pairs of literals defining new variables.  When found, the new variable is 
substituted.  For example, if the clause database contains 
 
  (A | !B | !C)  
 
DeepSAT substitutes in the new variable, yielding 
 
  (NEW_VARIABLE | !B) 
 
Then DeepSAT considers defining new variables.  If during the preceding conflict-driven-clause learning run, no length-2, literal 
assertions, or literal equalities were proved, then DeepSAT defines a new variable.  To decide which literals to OR together to define the 
new variable, DeepSAT queries its clause database to find which pairs of literals are most common. This is the maximum compression 
heuristic.  After defining the new variable, DeepSAT substitutes the new variable into all possible clauses. 
 
The goal of new variable definition is to keep the clauses compressed so that conflict-driven-learning proves at least one length-2, literal 
assertion, or literal equality during the conflict-driven-clause-learning pass. If defining 1 new variable is insufficient to keep DeepSAT 
proving these, DeepSAT defines 2 new variables in the next pass.  If this is still insufficient, DeepSAT defines 4 next time, etc. 
 

3.2 EQUALITY COLLAPSING 
 
Equal literals confuse DeepSAT's maximum compression heuristic by distorting the literal pair count used to choose the literals for the 
new variables.  So it is important to find and remove equal literals.  DeepSAT uses an O(N) runtime depth-first search algorithm to find 
all equalities implied by length-2 clause loops, and then substitute out equal literals from all clauses.   
 
For example, the length-2 clause loop 
 
  (A | B) & (!B | C) & (!C | !A) 
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implies  
 
  A == !B == !C 
 

3.3 CLAUSE SHORTENING 
 
Clauses that are longer than they need to be confuse DeepSAT's maximum compression heuristic for new variable generation, because 
these clauses introduce literal pairs into the literal pair count that should not be in the count.  The traditional conflict-driven-clause-
learning method often generates clauses that have unneeded literals.  Also, as the clause database grows and its implicativity 
strengthens, many clauses contain literals which are redundant with respect to the entire clause database, and thus these literals can be 
removed and thus the clauses shortened. The sections below describe how DeepSAT handles these two issues. 
 

3.3.1 CONFLICT-DRIVEN-CLAUSE-LEARNING CLAUSE SHORTENING 
 
When conflict-driven-clause-learning generates a new clause, DeepSAT follows the implication DAG that leads to each literal of the new 
clause. If for a literal, the implication DAG leading to that literal has a cut composed entirely of other literals of the new clause, then the 
literal is deleted from the new clause. 
 

3.3.2 GENERAL CLAUSE SHORTENING 
 
Periodically, DeepSAT randomly selects clauses in its clause database to be shortened.  The clause to be shortened is temporarily 
removed from the clause database. DeepSAT then sets variables to falsify literals of the clause.  The variables are selected in random 
order.  If implication propagation (BCP) forces any literal of the clause to be TRUE or FALSE, then the clause is shortened.  Details are 
shown in the examples below. 
 
For example, suppose the database contains the clause 
 
  (A | B | C | D | E) 
 
Suppose DeepSAT sets 
 
  A = FALSE 
  B = FALSE 
  C = FALSE 
 
and the implication propagation through the clause database yields 
 
  D = TRUE 
 
then literal E can be deleted from the clause. 
 
Then, if we backtrace through the implication propagation DAG, and we discover that  
 
  B = FALSE 
 
is not necessary to derive 
 
  D = TRUE 
 
then we delete literal B from the clause as well. 
 
On the other hand, if setting 
 
  A = FALSE 
  B = FALSE 
  C = FALSE 
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yields  
 
  D = FALSE 
 
by implication propagation, then we delete D from the clause. 
 
Finally, if setting 
 
  A = FALSE 
  B = FALSE 
  C = FALSE 
 
in that order yields a conflict, then we delete variables D and E from the clause.   
 
Then, if we backtrace through the implication propagation DAG, and we discover that  
 
  B = FALSE 
 
is not necessary to derive the conflict, we delete literal B from the clause as well. 
 
If a conflict is found during implication propagation, then a conflict clause is added to the clause database. 
 

3.4 CLAUSE DELETION 
 
The presence of redundant clauses bloats memory usage and increases runtime, but most importantly, distorts the literal pair count, 
which confuses the max compression heuristic for generating new variables. So it is important to delete redundant clauses as rapidly as 
possible. Of course DeepSAT never deletes clauses from the original problem definition, nor clauses needed to define new variables. 
 
DeepSAT deletes clauses in two different ways: 
  1)  DeepSAT attempts to prove length-2, 3, and 4 clauses redundant, and deletes the clause if it is redundant. 
  2)  DeepSAT keeps activity counts on length-4 and above clauses, and deletes the clauses if their activity count is too small. 
 
Details are below. 
 

3.4.1 CLAUSE DELETION of LENGTH-2, LENGTH-3, and LENGTH-4 CLAUSES 
 
Periodically, DeepSAT tests all length-4 clauses and smaller for redundancy.  DeepSAT starts with longest clauses first, and proceeds in 
random order for clauses of the same length. 
 
The following example shows how DeepSAT tests for clause redundancy. 
 
Assume the clause 
 
  (A | B | C)  
 
is in DeepSAT's clause database. 
 
DeepSAT temporarily removes the clause from its database, then sets variables from the clause to test implicativity of the clause 
database minus the tested clause. 
 
If setting 
 
  A = FALSE 
  B = FALSE 
 
yields  
 



  

 10

  C = TRUE 
 
and 
 
  A = FALSE and C = FALSE implies B = TRUE 
 
and  
 
  B = FALSE and C = FALSE implies A = TRUE 
 
then the clause is redundant and DeepSAT deletes it. 
 
DeepSAT does similar tests for length-2 and length-4 clauses. 
 
While doing these tests for clause deletion, DeepSAT records information which sometimes implies equalities or proved literal values.  
For example, if during testing described above, DeepSAT notices that 
 
  A = FALSE implies B = FALSE   
 
and 
 
  A = TRUE implies B = TRUE 
 
then it follows that  A = B. 
 
On the other hand, if 
 
  A = FALSE implies B = FALSE   
 
and 
 
  A = TRUE implies B = FALSE 
 
then it follows that B = FALSE. 
 

3.4.2 CLAUSE DELETION of LENGTH-4 and LONGER CLAUSES 
 
DeepSAT deletes enough length-4 and longer clauses to keep the runtime spent doing implication propagation through length-4 and 
longer clauses no more than the runtime spent doing implication propagation through length-3 and smaller clauses.  The metric 
DeepSAT uses to decide which clauses to delete is 
 
  value_of_clause = 1/(time_since_last_progation_through_clause*clause_length) 
 
DeepSAT deletes clauses with the smallest value_of_clause first. 
 

3.5 RESTARTS 
 
A “restart” is an interruption of conflict-driven clause learning where all variable settings get backtracked, and then variable setting 
resumes from scratch. 
 
DeepSAT has very frequent restarts.  DeepSAT measures the runtime from the last restart until the first conflict.  DeepSAT does another 
restart when the runtime exceeds 10X the runtime until the first conflict. 
 
The activity count used to select variables to branch is retained during restarts.  After runtime of approximately 500 times number of 
literals, the activity count is reset to 0.  (Runtime here is number of clause visits during implication propagation).  These resets are to 
prevent DeepSAT from getting stuck on one part of the problem. 
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3.6 COMMENTS on LENGTH-2 CLAUSES 
 
Length-2 clauses play a special role in DeepSAT. See the theory section below (section 4).   
 
Random selection of variable phase during branching, random ordering of variable branching during clause shortening give a high 
probability of proving most of the length-2 clauses that can be proved directly by resolution from other length-2 and length-3 clauses of 
high or moderate activity, with no longer clauses proven as intermediate steps.   
 
As discussed above, DeepSAT defines new variables only if it is unable to prove any length-1, length-2, or length-3 clauses during a pass 
of conflict-driven-clause-learning.  It is interesting that when DeepSAT runs on problems that traditional solvers can solve, DeepSAT 
usually does not need to introduce any new variables to solve the problem.  If DeepSAT does not need to introduce any new variables, 
then DeepSAT provably runs in polynomial time, because it must terminate after proving O(N^2) length-2 or shorter clauses. 
 
Introducing new variables more often than described above led to DeepSAT getting stuck on some SAT problems.  The difficulty seems 
to be that DeepSAT proves many clauses relating the new variable definitions to each other, but not enough regarding the underlying 
SAT problem.  Waiting until DeepSAT has proved all length-1, length-2 clauses possible before introducing new variables forces 
DeepSAT to prove length-2 and shorter clauses regarding the underlying SAT problem if it is possible to do so. 
 

3.7 CONFLICT-DRIVEN CLAUSE LEARNING 
 
Conflict-driven clause learning is the main algorithm used by modern satisfiability solvers such as CHAFF [chaff2001] and MINISAT2. 
Conflict-driven-clause learning is an effective method to search for a resolution refutation and a satisfying variable assignment 
simultaneously.  
 
Conflict-driven clause learning works by repeatedly setting values to variables and then propagating the implications of these settings.  
DeepSAT chooses the variable with the highest activity count to branch first (see details on activity count below).  DeepSAT decides 
whether to set the variable TRUE or FALSE randomly.  Then the implications of the variable setting are propagated (called “binary-
constraint-propagation” or “BCP” in the literature).  After all implications are propagated, one of the following happens: 

1) All clauses are satisfied (that is, all clauses are TRUE).  DeepSAT terminates and outputs the satisfying variable assignment it has 
found. 

2) Implication propagation leads to an inconsistency in implied setting for a variable (called a “conflict” in the literature).  Analysis 
of the implication DAG implies a new clause, which is added to the clause database, and will prevent this conflict from ever 
occurring again (the clause is called a “conflict clause” in the literature).  Then DeepSAT backtracks the variable settings until the 
conflict clause is no longer falsified and the conflict clause no longer implies variable setting.   
 
And then DeepSAT resumes setting variables. 

3) Neither of the above.  In this case, DeepSAT continues assigning values to variables. 
     

As conflict clauses accumulate, fewer and fewer variables need to be set to lead to a conflict.  If a satisfying assignment is not eventually 
found, then we reach the condition that setting a single variable alone leads to a conflict, and then setting the same variable to the 
opposite value also leads to a conflict.  When this happens, DeepSAT terminates and reports that the problem is unsatisfiable. 
 
Below are simple examples to show how conflict-driven clause learning works. 
 

3.7.1 EXAMPLE of CONDITION #1 ABOVE 
 
Consider the following three clauses: 
 
  (A | B | C) & (!C | D | E) & (A | !E | F) 
 
Assume we first branch  
 
  B = FALSE 
 
Nothing happens, so we keep branching.  Assume we next branch 
 
  D = FALSE 
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Again, nothing happens, so we keep branching.  Assume we next branch 
 
  A = FALSE 
 
Since A = FALSE and B = FALSE, clause (A | B | C) implies  
 
  C = TRUE 
 
Since C = TRUE, !C = FALSE, and we previously branched D = FALSE, so clause (!C | D | E) implies 
 
  E = TRUE 
 
Since E = TRUE, !E = FALSE, and we previously branched A = FALSE, so clause (A | !E | F) implies 
 
  F = TRUE 
 
Now all clauses are true, so DeepSAT terminates and reports the satisfying variable assignment 
 
  A = FALSE 
  B = FALSE 
  C = TRUE 
  D = FALSE 
  E = TRUE 
  F = FALSE 

 

3.7.2 EXAMPLE of CONDITION #2 ABOVE 

 
Again consider these three clauses: 
 
  (A | B | C) & (!C | D | E) & (A | !E | F) 
 
Now we consider a different variable setting pattern.  Assume previously we have branched 
 
  B = FALSE 
  D = FALSE 
  F = FALSE 
 
Now assume we branch 
 
  A = FALSE 
 
Since A = FALSE and B = FALSE, clause (A | B | C) implies  
 
  C = TRUE 
 
Since C = TRUE, !C = FALSE, and we previously branched D = FALSE, so clause (!C | D | E) implies 
 
  E = TRUE 
 
But since A = FALSE and F = FALSE, clause (A | !E | F) implies !E = TRUE, which implies 
 
  E = FALSE 
 
We now have an implication conflict, because one implication path proves E = FALSE, and another proves E = TRUE.  Backtracing from 
the conflict, we discover that once 
 
  B = FALSE, D = FALSE, F = FALSE 



  

 13

 
Setting  
 
  A = FALSE 
 
inevitably leads to the conflict by implication propagation.  Thus if 
 
  B = FALSE, D = FALSE, F = FALSE 
  
we must have  
 
  A = TRUE 
 
The clause which directly enforces this by implication propagation is 
 
  (A | B | D | F) 
 
so we add this new clause to the clause database, which ensures that this conflict can never occur again.   
 
To add this clause to the database but not have it be false, we must backtrack setting A.  To have the clause not immediately cause an 
implication, we must also backtrack setting F. 
 
All variables involved in the conflict have their activity count incremented. Variables with the highest activity count get branched first.  
Older activity counts less than recent activity. 
 
Note that clause (A | B | D | F) can be derived from the other clauses by resolution. 
 

3.8 LOOP RESOLUTION 
 
DeepSAT searches for cycles in the clause structure of length-2 and length-3 clauses which imply length-1 and length-2 clauses.  If a 
length-1 clause gets proved, its implications are propagated by BCP.  If a length-2 clause get proved, DeepSAT checks the new clause for 
redundancy against length-2 and length-3 clauses already in the database.  The redundancy check is the same as described in section 
3.4.1 for deletion of length-2, length-3, and length-4 clauses. 
 

3.8.1 CLAUSE LOOP IMPLYING LENGTH-1 CLAUSE 
 
A cycle of length-2 clauses with inverted literals between pairs of clauses adjacent in the cycle except one pair which is same phase 
implies a length-1 clauses. 
 
For example 
 
  (A | B) & (!B | C) & (!C | A) 
 
implies 
 
  A = TRUE 
 

3.8.2 CLAUSE LOOP IMPLYING LENGTH-2 CLAUSE 
 
A cycle of clauses as above but with one of the clauses being length-3 implies a length-2 clause. 
 
For example 
 
  (A | B) & (!B | C | D) & (!C | A) 
 
implies 
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  (A | D) 
 
 

3.8.3 SEARCH ALGORITHM 
 
 First loops implying length-1 clauses are searched.  When no more length-1 loops remain, then loops implying length-2 clauses are 
searched.  When no loops implying length-1 or length-2 clauses remain, the algorithm reports the search is complete.    
 
DeepSAT keeps length-2 and length-3 clauses in a priority queue.  Clauses get popped off the queue to be expanded.  Expanding a clause 
means that DeepSAT finds all loops which can prove clauses using the popped clause.  Expanding searches for either length-1 clause 
loops, or length-2 or shorter clause loops.  The priority queue stores clauses sorted by type of search.  Clauses due for length-1 search 
pop first.  After clause is expanded for length-1, the clause if re-inserted into the queue for length-2 search.  After clause is expanded for 
length-2, clause is removed from the queue. 
 
When the queue becomes empty, the algorithm reports that the search is complete. 
 
Initially, all clauses go into the queue labelled for the smallest loop that can be searched from the clauses.  Length-2 clause can expand 
for length-1 loops; length-3 clause can expand for length-2 loops.  When a new clause is proved, either by loop resolution, or by other 
means, the clause is inserted into the queue in the same manner. 
 

4 THEORETICAL ANALYSIS:  WHY DeepSAT PRODUCES POLYNOMIAL-LENGTH REFUTATIONS 
 
First in section 4.1 we give a brief overview of the mathematics of DeepSAT.  Then in section 4.2 we prove that DeepSAT's loop 
resolution inference engine (see section 3.8) produces a refutation whose length is worst case polynomial in the length of the shortest 
possible refutation, if DeepSAT is given a set of new variable definitions that are carefully chosen.  Then we argue that DeepSAT's 
heuristic for generating new variable definitions is sufficiently good to produce polynomial length refutations, and in section 5 we give 
empirical evidence which supports the theory. 
 

4.1 OVERVIEW of DeepSAT MATHEMATICS 
 
The loop resolution inference engine of DeepSAT uses resolution to derive all possible length-2 and smaller clauses from length-3 and 
smaller clauses already in DeepSAT's database.  When all possible derivations are completed, DeepSAT defines new variables in terms of 
existing variables, using a heuristic designed to achieve maximum average compression of clause length. Then DeepSAT substitutes the 
new variables into all clauses to reduce the clause lengths, generating new length-3 and smaller clauses. 
 
The process repeats until either a refutation is found or a satisfying variable assignment is found. 
 

4.2 WHY DeepSAT PRODUCES POLYNOMIAL-LENGTH REFUTATIONS 
 
First in section 4.2.1 we prove that any extended resolution proof can be re-written to use only length-3 clauses and smaller, by defining 
new variables and substituting into the clauses of the proof to shorten the clauses.  Then in section 4.2.2 we prove that DeepSAT's 
length-2 loop resolution inference engine can generate a refutation of polynomial length if given the new variables defined for the re-
written proof. Then we prove that very much lower-quality set of new variable definitions is sufficient to enable DeepSAT to find a 
polynomial-length refutation. Finally, we claim that it is easy to generate such a lower-quality set of new variable definitions. 
 

4.2.1 COMPRESSING CLAUSES IN THE SHORTEST POSSIBLE REFUTATION 
 
Let  
 
  proof 
 
be an extended resolution refutation of a satisfiability problem. 
 
Define  
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  proof_length(proof) 
 
as the number of literals in "proof". 
 
Define  
 
  shortest_proof 
 
as the proof with the smallest possible "proof_length". 
 
Define  
 
  shortest_proof_length 
 
as proof_length(shortest_proof). 
 
THEOREM 1: 
  It is always possible to transform "shortest_proof" into another   refutation which has these properties: 

1) The new refutation uses only length-3 and smaller clauses 
2) The new refutation proves only length-2 and smaller clauses using loop resolution 
3)  The new refutation requires the definition of no more than shortest_proof_length new variables. 

PROOF: 
  See appendix 9 for rigorous proof of THEOREM 1.  The proof   is similar to the reduction of general satisfiability to 3-SAT   given 
  in [Garey&Johnson]. 
END_OF_PROOF 

 
The transformation of shortest_proof is accomplished by defining new variables which, when substituted into the clauses of 
shortest_proof, shorten all of the clauses of shortest_proof into length-2 and smaller clauses.  A few new steps in the transformed proof 
are needed, as detailed in appendix 9. 
 

4.2.2 DeepSAT's INFERENCE ENGINE GENERATES POLYNOMIAL-LENGTH PROOFS 
 
In this section, we argue that DeepSAT always produces refutations with  
 
  proof_length <= O(shortest_proof_length^(2*P))    (equation 4) 
 
where P >= 1, and the number of new variables DeepSAT defines is 
 
  number_of_new_variables <= O(shortest_proof_length^P)     (equation 5) 
 
 
First we prove that DeepSAT can find a polynomial-length refutation if given a short "hint" consisting of a special set of new variable 
definitions. Then we prove that very much lower-quality set of new variable definitions is sufficient to enable DeepSAT to find a 
polynomial-length refutation. Finally, we claim that it is easy to generate such a lower-quality set of new variable definitions. 
 
Define  
 
  num_vars 
 
as the number of variables in DeepSAT's clause database. 
 
LEMMA 2: 
  If a resolution refutation using only length-3 and smaller clauses (and proving by loop resolution only length-2 and smaller clauses) is  
  possible, DeepSAT's loop resolution inference engine (length-2 engine) will  
  derive a refutation with 
   
    proof_length <= 2*(4*num_vars^2) + 1*(num_vars) 
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      (equation 6) 
 
PROOF: 
  Only 4*num_vars^2 length-2 
  clauses are possible; only num_vars length-1 clauses are possible, 
  so the proof_length bound follows. 
 
  DeepSAT derives all possible implications provable by resolution involving 
  length-3 and smaller clauses, and by assumption, a refutation is possible, 
  so DeepSAT will derive a refutation. 
END_OF_PROOF 
 
Usually DeepSAT finds refutations with proof_length much smaller than O(num_vars^2).  
 
LEMMA 3: 
  If DeepSAT's loop resolution inference engine (length-2 engine) is given: 
    1)  new variable definitions from shortest_proof 
      AND 
    2)  new variable definitions from THEOREM 1 
      AND 
    3)  original satisfiability problem, but with all clauses except variable definition clauses shortened 
        to length-2 and smaller, as detailed in THEOREM 1 
  then DeepSAT's main inference engine will always derive a refutation 
  with  
     
    proof_length <= O(shortest_proof_length^2)      (equation 7) 
 
PROOF: 
  From THEOREM 1, we know that a refutation using only length-3 and smaller 
  clauses is possible. 
 
  After new variable definitions from THEOREM 1 
 
    num_vars = O(shortest_proof_length)           (equation 8) 
   
  Substituting into result from LEMMA 2 gives us 
 
    proof_length <= O(shortest_proof_length^2)        (equation 9) 
 
END_OF_PROOF 
 
Usually we see much slower growth rates, as discussed earlier. 
 
Thus we see that DeepSAT can find a polynomial-length refutation if given a short "hint" consisting of the correct new variable 
definitions. 
 
We now prove that very much lower-quality set of new variable definitions is sufficient to enable DeepSAT to find a polynomial-length 
refutation. 
 
DEFINITION 4: 
  We say a set S of new variable definitions "compress and contain" 
  an extended resolution refutation R if all of the new variable 
  definitions in the extended resolution refutation R are contained 
  in S and the new variable definitions in S are sufficient to 
  compress R to a refutation which proves only length-2 and smaller 
  clauses. 
 
LEMMA 5: 
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  Let K be a number => 1 and let P be a number >= 1. 
 
  Let DeepSAT's loop resolution inference engine (length-2 engine) be given 
   
    num_new_variables = K*shortest_proof_length^P    (equation 10) 
     
  new variable definitions.  If ANY subset of 
  the new variable definitions is sufficient to compress and contain 
  ANY extended resolution refutation, then DeepSAT's  
  length-2 loop resolution inference engine will always derive a refutation 
  with  
     
    proof_length <= O(shortest_proof_length^(2*P))   (equation 11) 
 
PROOF: 
  By assumption, we know that a refutation proving only length-2 and smaller 
  clauses is possible. 
 
  After new variable definitions 
 
    num_vars = O(shortest_proof_length^P)          (equation 12) 
   
  Substituting into result from LEMMA 2 gives us 
 
    proof_length <= O(shortest_proof_length^(2*P))    (equation 13) 
 
END_OF_PROOF 
 
 
CONJECTURE 7: 
  DeepSAT's heuristic for generating new variable definitions 
  is sufficiently good to always satisfy LEMMA 5 for some constant 
  K and some power P. 
 
ARGUMENT: 
  LEMMA 5 is actually quite a weak condition.  Most of the new variables  
  defined can be useless, and ANY subset can compress and contain 
  ANY extended resolution proof, even one very much longer than the shortest 
  possible.  It is likely that there are many many extended resolution 
  proofs that are polynomially longer than the shortest possible.  So having 
  a large set of new variables defined according to a good heuristic, it 
  seems likely that some subset will compress and contain at least one 
  of the many extended resolution proofs. 
 
  The strongest argument is that our empirical data seems consistent  
  with CONJECTURE 7, and we have so far been unable to find any counterexample. 
END_OF_ARGUMENT 
 
 
CONJECTURE 8: 
  Extended resolution can simulate any refutation proof in any proof language 
  regarding the satisfiability problem, with at most polynomial growth in  
  proof length.  
   
See [urquahart1995] for discussion of CONJECTURE 8. 
 
In the abstract and elsewhere in this paper, we make assertions about "all proofs" and "any proof in any language".  If CONJECTURE 8 is 
false, we need to weaken the statements to "proofs in languages that extended resolution can polynomially simulate". 
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If CONJECTURE 8 is true, then any statements about polynomial behavior of extended resolution refutations applies to ALL refutations 
in ALL languages. 
 
 
LEMMA 9: 
  DeepSAT produces refutations with 
 
    proof_length <= O(num_new_variables^R)   (equation 14) 
 
  for some R >= 1. 
 
PROOF: 
  The result follows from equation 10, equation 11, and  
  the details of the DeepSAT algorithm from section 3. 
 
END_OF_PROOF 
 

5 FURTHER ANALYSIS of EMPIRICAL EVIDENCE of SECTION 2 
 
From LEMMA 9, we see that the runtime of DeepSAT is polynomial in the number of new variables introduced. CONJECTURE 7 says 
that number of new variables is polynomial in the shortest proof length.  Below we discuss empirical support for CONJECTURE 7 and 
related matters. 
 

5.1 Pigeonhole principle 
 
Satisfiability problem which asserts that P pegs must be placed in P-1 holes. 
 
Linear regression results of log-log data from table 11 and section 2.2 give these results: 
 
EDIT NOTE:  change “TORTOISE” to “DeepSAT” below 

 
 
 
N = number of literals in the satisfiability problem. 
 
Analysis of the data follows: 
  1)  shortest refutation known to author [cook1976]:    O(N^(4/3)) 
  2)  from plot:  num_new_variables = O(N^1.75) 



  

 19

  3)  from equation 10 and the above data we derive 
        P = 1.31 
  4)  from equation 14 and the above we derive 
        R = 2.66 
 

 

 

5.2 XOR reordering 
 
Satisfiability problem which asserts that N variables exclusive-or-ed together in 2 different random orders have different results for some 
input. 
 
Linear regression results of log-log data from table 12 and section 2.3 give these results: 
 
EDIT NOTE:  change “TORTOISE” to “DeepSAT” below 

 
 
 
N = number of literals in the satisfiability problem. 
 
Analysis of the data follows: 
  1)  shortest refutation known to author:    O(N^2) 
  2)  from plot:  num_new_variables = O(N^2.2) 
  3)  from equation 10 and the above data we derive 
        P = 1.1 
  4)  from equation 14  and the above we derive 
        R = 2 
 

5.3 Multiplier equivalence/correctness 
 
Satisfiability problem which asserts that two different randomly generated multipliers get different results for some input.  To prevent 
the simple enumeration refutation, the product plane is used directly as input, with no input bits feeding the product plane with bit AND 
logic. To make the problem hard, partial sums and carry bits at each level are scrambled by a randomly generated 3-tree of full adders. 
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Linear regression results of log-log data from table 13 and section 2.4 give these results: 
 

 
 
N = number of literals in the satisfiability problem. 
 
Analysis of the data follows: 
  1)  shortest refutation known to author:    O(N^(3/2)) 
  2)  from plot:  num_new_variables = O(N^4.65) 
  3)  from equation 10 and the above data we derive 
        P = 3.1 
  4)  from equation 14  and the above we derive 
        R = 1.38 
 

5.4 Analysis 
 
The results for XOR reordering (P = 1.1, R = 2) seem reasonably good, since P cannot be less than 1, and R = 2 is expected from random 
3-SAT clauses.  But the PIGEONHOLE results (P = 1.31, R = 2.66), are less comforting, and the MULTIPLIER EQUIVALANCE results (P = 
3.1, R = 1.38), while not exponential (yeah!), seem pretty bad. 
 
Hopefully better heuristics for new variable generation will lead to better values of P and R for these problems in the future. 
 

6 DeepSAT and the P ?= NP QUESTION 
 
The central claim of this paper is independent of the P ?= NP question. 
 
Specifically, 
 
LEMMA 10: 
  If CONJECTURE 7 and CONJECTURE 8 are true, then: 
    1)  if co-NP == NP, then DeepSAT runs in polynomial time in 
        the size of the input problem for all problems.  And thus 
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        P == NP.3 
    2)  if co-NP != NP (which implies P != NP), then DeepSAT  
        requires worse than polynomial time for some problem types. 
PROOF: 
  For case #1, co-NP == NP means that polynomial-sized refutations 
  exist for all NP-complete problems.  Since CONJECTURE 8 and LEMMA 9 
  imply that DeepSAT can solve all problems in polynomial time vs the  
  shortest refutation size, the conclusion follows. 
 
  For case #2, no algorithm, including DeepSAT, can hope to solve 
  problems with shortest refutation of worse than polynomial size in polynomial time, 
  because solving the problem requires writing a refutation. 
END_OF_PROOF 
 
(Note that "co-NP == NP" is just a fancy way of saying that all unsatisfiable problems have a polynomial length refutation). 
 
LEMMA 10 is not really new nor revolutionary.  Adapting [Levin] to satisfiability gives an algorithm which must find a satisfying 
assignment in polynomial time if P == NP and there is a satisfying assignment.  If we accept CONJECTURE 8, then we can further 
modify [Levin] to detect a refutation in extended resolution as well as a satisfying assignment, yielding an algorithm which is fully 
polynomial time for satisfiability (if P == NP).  The algorithm is utterly impractical, because it has a constant factor of 2^B, where B is 
the number of bits required to express some program which solves satisfiability in polynomial time. 
 
The adaptation of [Levin] works by trying all possible bit combinations, starting with shortest first, and trying to run each as a program, 
with a predetermined runtime limitation, and testing whether the result of the run is a satisfying assignment, or an extended resolution 
refutation.  We successively try more bit combinations, and allow them to run for longer runtime before killing them.  If we arrange the 
details carefully the claimed polynomial time result follows [Levin]. 
 
What is new about DeepSAT vs [Levin] is that DeepSAT can actually solve real problems in acceptable runtimes, which our adaptation 
of [Levin] cannot.  Unfortunately, our result also requires CONJECTURE 7, as well as CONJECTURE 8. 
 
The author has been unable to find any class of satisfiability problem instances which violate CONJECTURE 7.  This suggests that either 
CONJECTURE 7 is true, or else classes of problems which violate CONJECTURE 7 are rare and/or contrived.  CONJECTURE 8 is believed 
by many but is unproven. 
 
If we accept CONJECTURE 7 and CONJECTURE 8 as true, and thus we also accept LEMMA 10, we might hope that we can settle the P 
?= NP question empirically.  That is, by running DeepSAT on satisfiability problem instances chosen randomly, in a manner which we 
think samples the space of all problems in a reasonable way.  If we empirically find exponential growth of runtime with problem size, 
(and equivalently exponential growth in number of new variables needed with problem size), this implies P != NP.  If, on the other hand, 
we empirically find polynomial growth of runtime with problem size, (and equivalently polynomial growth in number of new variables 
needed with problem size), this implies that either P == NP, or else violating classes of problems requiring exponential runtime are rare 
and/or contrived. 
 
It is not possible to rule out by empirical measurements the possibility of rare and/or contrived classes of problems that go exponential, 
but this fact probably has little practical significance.  If DeepSAT almost always solves problems in polynomial time, and nobody can 
find a counterexample, this is all we need to know to use DeepSAT as a practical solution to satisfiability problem. 
 
We need a complete theoretical proof that relies on no conjectures to definitively rule out any exponential behavior, and this author 
doubts such a result will appear any time soon. 
 
Mathematical purists might be offended by our lack of complete proof of CONJECTURE 7 and LEMMA 10, and our reliance instead on 
empirical support for CONJECTURE 7.  Please remember that the main support for the widely believed P != NP conjecture is also 
empirical, namely, the failure of many researchers to find any algorithm which solves satisfiability problem in polynomial runtime.   
 
The situation of DeepSAT and SATISFIABILITY reminds this author of the situation of the simplex method and linear programming 
before the 1970's.  The simplex method seemed to run fast on most or all linear programming problem instances, but no proof existed 
explaining why this is.   
 

 
3 DeepSAT is a randomized algorithm and the randomization seems important for good performance.  Strictly speaking, the P ?=NP questions refers to deterministic algorithms 
only, not randomized algorithms.  I am ignoring that technicality in this paper. 
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Then in 1972 Klee&Minty published a class of linear programming problem instances that cause the simplex algorithm to require 
exponential runtime [Klee&Minty1972].  But then finally in 1979 the complexity of linear programming was settled with the publication 
of the ellipsoid algorithm, which has provably polynomial runtime on all problem instances [khachian1979]. Nevertheless, the simplex 
algorithm continues to be widely used in practice in spite of the Klee-Minty result, and the ellipsoid algorithm is never used. 
 

7 SUMMARY AND CONCLUSION 
 
DeepSAT is a new program for the satisfiability problem which extends the conflict-driven-clause-learning method to solve many 
problems previously unsolvable by general-purpose satisfiability solvers. The key innovation is introducing new variables during the 
run, as well as a few other features needed to make introduction of new variables effective. Empirical data and theoretical analysis give 
hope that DeepSAT runs in polynomial time for most or all problem classes, and also hope of shedding some light on the P ?= NP 
question. 
 
The polynomial growth exponents of DeepSAT on several problem classes are much worse than what we might hope for from theory, 
and so we hope that future improvements in the heuristics of DeepSAT can further improve the runtime polynomial growth exponents. 
 

8 APPENDIX - PROOF of THEOREM 1 
 
THEOREM 1: 
  It is always possible to transform "shortest_proof" into another 
  refutation which has these properties: 
    1)  The new refutation uses only length-3 and smaller clauses 
    2)  The new refutation requires the definition of no more than  
        shortest_proof_length new variables. 
PROOF: 
 
We start by compressing the input satisfiability problem into length-3 and smaller clauses.  We do this by defining new variables which 
can be substituted into clauses of the satisfiability problem to shorten the clauses.  Every substitution shortens a clause by 1 literal. 
 
For example, if the original problem contains the clause 
 
  (A|B|C|D|E) 
 
then we can define the new variable 
 
  NEWVAR = A|B 
 
and then substitute into the clause, giving 
 
  (NEWVAR|C|D|E) 
 
Strictly speaking, we allow only resolution and new variable definitions in our proofs.  But we can accomplish substitution by resolution.  
See the formal extended resolution proof below: 
 
  (s1)            A|B|C|D|E       - axiom; 
 
  /* NEWVAR = A | B */ 
  (def_newvar) define NEWVAR = truth_table(A,B) : 0111 ; 
  (def_newvar.s1) !NEWVAR | A | B - from definition (def_newvar); 
  (def_newvar.s2) NEWVAR | !A     - from definition (def_newvar); 
  (def_newvar.s3) NEWVAR | !B     - from definition (def_newvar); 
 
  /* substitute NEWVAR into (s1) using resolution */ 
  (p1)            NEWVAR|B|C|D|E  - resolve (def_newvar.s2),(s1); 
  (p2)            NEWVAR|C|D|E    - resolve (def_newvar.s3),(p1); 
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Our formal extended resolution proof is in the form: 
 
  (label)         <statement>     - <reason statement is true>; 
 
Note that if we substitute into a length-3 clause, the resolution steps involve only length-3 and smaller clauses.  For example, if we have 
the clause 
 
  (A|B|C) 
 
and the new variable definition 
 
  NEWVAR = A|B 
 
and we wish to substitute to obtain 
 
  (NEWVAR|C) 
 
we can do this with the following extended resolution proof: 
 
  (s1)            A|B|C           - axiom; 
 
  /* NEWVAR = A | B */ 
  (def_newvar) define NEWVAR = truth_table(A,B) : 0111 ; 
  (def_newvar.s1) !NEWVAR | A | B - from definition (def_newvar); 
  (def_newvar.s2) NEWVAR | !A     - from definition (def_newvar); 
  (def_newvar.s3) NEWVAR | !B     - from definition (def_newvar); 
 
  /* substitute NEWVAR into (s1) using resolution */ 
  (p1)            NEWVAR|B|C      - resolve (def_newvar.s2),(s1); 
  (p2)            NEWVAR|C        - resolve (def_newvar.s3),(p1); 
 
We can also reverse substitute using resolution.  For example, if we have the clause 
 
  (NEWVAR|C) 
 
and we want to reverse substitute 
 
  NEWVAR = A|B 
 
to obtain 
 
  (A|B|C) 
 
we can do this using extended resolution as follows: 
 
  /* NEWVAR = A | B */ 
  (def_newvar) define NEWVAR = truth_table(A,B) : 0111 ; 
  (def_newvar.s1) !NEWVAR | A | B - from definition (def_newvar); 
  (def_newvar.s2) NEWVAR | !A     - from definition (def_newvar); 
  (def_newvar.s3) NEWVAR | !B     - from definition (def_newvar); 
 
  (s1)            NEWVAR|C        - axiom; 
 
  /* reverse substitute NEWVAR into (s1) using resolution */ 
  (p1)            A|B|C           - resolve (def_newvar.s1),(s1); 
 
Note that reverse substituting to eliminate a new variable from a length-2 clause also requires resolution steps involving length-3 and 
smaller clauses. 
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We now show how to compress the body of shortest_proof into another proof involving only length-3 and shorter clauses, using 
substitution of new variables into length-3 clauses, and reverse substitution to eliminate new variables from length-2 clauses.   
 
Of course shortest_proof consists of a series of resolution steps.  For example 
 
  (A|B|C|D|E|R)&(!R|F|G|H|I|J) --> (A|B|C|D|E|F|G|H|I|J) 
 
Assume the 2 antecedent clauses have already been compressed to 3 clauses.  If we are lucky, the resolvent variable R is still exposed, for 
example: 
 
  NEWVAR_AB = A|B 
  NEWVAR_CD = C|D 
  NEWVAR_ABCD = NEWVAR_AB | NEWVAR_CD 
  NEWVAR_FG = F|G 
  NEWVAR_HI = H|I 
  NEWVAR_FGHI = NEWVAR_FG | NEWVAR_HI 
 
Substituting into the antecedent clauses gives 
 
  (NEWVAR_ABCD|E|R)&(!R|NEWVAR_FGHI|J) 
 
Doing resolution to combine these clauses is illegal since it produces a length-4 clause.  So we must define another new variable to 
shorten one of the antecedent clauses, for example 
 
  NEWVAR_ABCDE = NEWVAR_ABCD | E 
 
Substituting into the first antecedent clauses allows us to derive a length-3 clause which is equivalent to the derived clause of the 
original step: 
 
  (NEWVAR_ABCDE|R)&(!R|NEWVAR_FGHI|J) --> (NEWVAR_ABCDE|NEWVAR_FGHI|J) 
 
If we are not lucky, the antecedent clauses have been compressed so that the resolvent variable is hidden in the new variables. For 
example, original step 
 
  (A|B|C|D|E|R)&(!R|F|G|H|I|J) --> (A|B|C|D|E|F|G|H|I|J) 
 
compressed with 
 
  NEWVAR_CD = C|D 
  NEWVAR_ER = E|R 
  NEWVAR_CDER = NEWVAR_CD | NEWVAR_ER 
  NEWVAR_nRF = !R | F 
  NEWVAR_GH = G|H 
  NEWVAR_nRFGH = NEWVAR_nRF | NEWVAR_GH 
 
giving us antecedent clauses 
 
  (A|B|NEWVAR_CDER)&(NEWVAR_nRFGH|I|J) 
 
There is no way to combine these clauses to give the derived clause. The problem is that the resolvent variable R is hidden in the new 
variables that have been substituted into the antecedent clauses. 
 
To fix this, we use a series of substitutions and reverse substitutions to expose R in both antecedent clauses.  For example, for the clause 
 
  (A|B|NEWVAR_CDER) 
 
we can first compress by defining  
 
  NEWVAR_AB = A|B 
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and substituting to yield 
 
  (NEWVAR_AB | NEWVAR_CDER) 
 
Now we can reverse substitute to eliminate NEWVAR_CDER: 
 
  (NEWVAR_AB | NEWVAR_CD | NEWVAR_ER) 
 
Now define 
 
  NEWVAR_ABCD = NEWVAR_AB | NEWVARCD 
 
and substitute, yielding 
 
  (NEWVAR_ABCD | NEWVAR_ER) 
 
Now we can reverse substitute to eliminate NEWVAR_ER, yielding 
 
  (NEWVAR_ABCD | E | R) 
 
Note that all of the substitutions and reverse substitutions require resolution involving length-3 and smaller clauses. Also note that the 
number of new variables defined is <= the number of literals of the antecedent clause. 
 
We do this process on the 2nd antecedent clause as well, and we have 2 length-3 clauses both with resolvent variables exposed. Now we 
do what we did in the "lucky" case above:  define a new variable to compress one of the antecedent clauses into a length-2 clause, and 
the perform resolution on the 2 antecedent clauses to derive a compressed derived clause. 
 
We can do this process on all the resolution steps of shortest_proof, starting from the original satisfiability problem compressed to 
length-3 clauses, and working down the proof in order of the steps of shortest_proof. 
 
The resulting compressed proof satisfies the claims of THEOREM 1. 
 
 
END_OF_PROOF 
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Filseth was a great sounding board over many years to help me refine and perfect many of the ideas in DeepSAT. Robert Damiono, Ted 
Stanion, Jerry Burch, Reilly Jacobi, Paul Filseth, and Lawrence Ryan provided me with numerous interesting testcases that helped me 
improve DeepSAT. 
 
Finally, thanks to Shankar Krishnamoorthy, who provided corporate support for this work and who suggested the name “DeepSAT”. 
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